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ABSTRACT

LOWER BOUNDS ON SAMPLE SIZE IN STRUCTURAL EQUATION MODELING

Computationally intensive structural equation modeling (SEM) approaches have been in development over much of the 20" century, initiated by the seminal work of Sewall Wright.  To this
day, sample size requirements remain a vexing question in SEM based studies. Complexities which increase information demands in structural model estimation increase with the number
of potential combinations of latent variables; while the information supplied for estimation increases with the number of measured parameters times the number of observations in the
sample size — both are non-linear. This alone would imply that requisite sample size is not a linear function solely of indicator count, even though such heuristics are widely invoked in
justifying SEM sample size.  This paper develops two lower bounds on sample size in SEM, the first as a function of the ratio of indicator variables to latent variables, and the second as a
function of minimum effect, power and significance. The algorithm is applied to a meta-study of a set of research published in five of the top MIS journals. The study shows a systematic
bias towards choosing sample sizes that are significantly too small. Actual sample sizes averaged only 50% of the minimum needed to draw the conclusions the studies claimed. Overall,
80% of the research articles in the meta-study drew conclusions from insufficient samples. Lacking accurate sample size information, researchers are inclined to economize on sample
collection with inadequate samples that hurt the credibility of research conclusions. Guidelines are provided for applying the algorithms developed in this study, and companion software

encapsulating the paper’s formulae is made available for download. (261 words)
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1. INTRODUCTION

The past two decades have seen a remarkable acceleration of interest in structural equations modeling (SEM) methods in management research, including partial least squares (PLS) and
implementations of Joreskog’s SEM algorithms (LISREL, AMOS, EQS). The breadth of application of SEM methods has been expanding, with SEM increasingly applied to exploratory,
confirmatory and predictive analysis with a variety of ad hoc topics and models.  SEM is particularly useful in the social sciences where many if not most key concepts are not directly

observable. Because many key concepts in the social sciences are inherently latent, questions of construct validity and methodological soundness take on a particular urgency.

To this day, methodologies for assessing suitable sample size requirements remain a vexing question in SEM based studies. The number of degrees of freedom consuming information in
structural model estimation increases with the number of potential combinations of latent variables; while the information supplied in estimating increases with the number of measured
parameters (i.e., indicators) times the number of observations (i.e., the sample size) — both are non-linear in model parameters. This should imply that requisite sample size is not a linear
function solely of indicator count, even though such heuristics are widely invoked in justifying SEM sample size. Monte Carlo simulation in this field has lent support to the non-linearity of
sample size requirements, though research to date has not yielded a sample size formula suitable for SEM. This paper proposes a set of necessary conditions (thus lower bounds) for SEM

sample adequacy.

The exposition proceeds as follows. Section 2 describes the historical context, commenting on how particular research objectives and computational limitations resulted in our current SEM
toolsets. Section 3 summarizes the prior literature on sample adequacy results from Monte Carlo simulations. Section 4 develops an algorithm for computing the minimum sample size
needed to detect a minimum effect at given power and significance levels in the structural equation model. Section 5 discusses these with an application research articles whose

conclusions rest on confirmatory SEM analyses, and assesses whether the sample sizes used are adequate.

2. PRIOR LITERATURE

SEM evolved in three different streams: (1) systems of equation regression methods developed mainly at the Cowles Commission; (2) iterative maximum likelihood algorithms for path
analysis developed mainly at the University of Uppsala; and (3) iterative least squares fit algorithms for path analysis also developed at the University of Uppsala. Figure 1 provides a
chronology of the pivotal developments in latent variable statistics in terms of method (pre-computer, computer intensive and SEM) and objectives (exploratory / prediction or

confirmation).

INSERT FIGURE 1: DEVELOPMENT OF STRUCTURAL EQUATION MODEL ESTIMATION

Both LISREL and PLS were conceived as iterative computer algorithms, with an emphasis from the start on creating an accessible graphical and data entry interface and extension of Wright’s
(1921) path analysis. Early Cowles’ Commission work on simultaneous equations estimation centered on Koopman and Hood’s (1953) algorithms from the economics of transportation and
optimal routing, with maximum likelihood estimation, and closed form algebraic calculations, as iterative solution search techniques were limited in the days before computers. Anderson
and Rubin (1949, 1950) developed the limited information maximum likelihood estimator for the parameters of a single structural equation, which indirectly included the two-stage least
squares estimator and its asymptotic distribution (Anderson, 2005) and Farebrother (1999). Two-stage least squares was originally proposed as a method of estimating the parameters of a
single structural equation in a system of linear simultaneous equations, being introduced by Theil (1953a, 1953b, 1961) and more or less independently by Basmann (1957) and Sargan
(1958).  Anderson’s limited information maximum likelihood estimation was eventually implemented in a computer search algorithm, where it competed with other iterative SEM

algorithms.  Of these, two-stage least squares was by far the most widely used method in the 1960s and the early 1970s.

LISREL and PLS path modeling approaches were championed at Cowles mainly by Nobelist Trygve Haavelmo (1943). Unfortunately underlying assumptions of LISREL and PLS were challenged
by economists such as Freedman (1987) who objected to their “failure to distinguish among causal assumptions, statistical implications, and policy claims has been one of the main reasons
for the suspicion and confusion surrounding quantitative methods in the social sciences” (see also Wold’s (1987) response). Haavelmo'’s path analysis never gained a large following among
U.S. econometricians, but was successful in influencing a generation of Haavelmo's fellow Scandinavian statisticians, including Hermann Wold, Karl Jéreskog , and Claes Fornell.  Fornell
introduced LISREL and PLS techniques to many of his Michigan colleagues through influential papers in accounting (Fornell and Larker 1981), and information systems (Davis, et al, 1989).
Dhrymes (1971; Dhrymes, et al. 1974) provided evidence that PLS estimates asymptotically approached those of two-stage least squares with exactly identified equations.  This point is

more of academic importance than practical, because most empirical studies overidentify. But in one sense, all of the limited information methods (OLS excluded) yield similar results.

3. SAMPLE SIZE AND THE RATIO OF INDICATORS TO LATENT VARIABLES
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Structural equation modeling in MIS has taken a casual attitude towards choice of sample size. Since the early 1990s, MIS researchers have alluded to an ad hoc rule of thumb requiring the
choosing of 10 observations per indicator in setting a lower bound for the adequacy of sample sizes. Justifications for this rule of 10 appear in several frequently cited publications (Barclay,
et al. 1995; Chin 1998; Chin, and Newsted 1999; Kahai and Cooper 2003) though none of these researchers refers to the original articulation of the rule by Nunnally (1967) who suggested

(without providing supporting evidence) that in SEM estimation ‘a good rule is to have at least ten times as many subjects as variables.’

Within the MIS field, Goodhue, et al. (2006, 2007) studied the rule of 10 using Monte Carlo simulation to compare sample sizes of 40, 90, 150, and 200, along with varying effect sizes (large,
medium, small and no effect) to determine the adequacy of this rule for a given significance and power of tests.  They concluded that: “In fact, for simple [SEM] models with normally
distributed data and relatively reliable measures, none of the three techniques have adequate power to detect small or medium effects at small sample sizes ... These findings run counter to
extant suggestions in MIS literature” (Goodhue, et al. 2006, p. 202b).  This finding is not completely unexpected, as similar SEM rules of thumb have been investigated since Nunnally’s

(1967) proposal. The debate has evolved significantly since his 1967 publication.

The rule of 10 couches the sample size question in terms of the ratio of observations (sample points) to free parameters — for example, Bollen (1989) stated that “though | know of no hard
and fast rule, a useful suggestion is to have at least several cases per free parameter” and Bentler (1989) suggested a 5:1 ratio of sample size to number of free parameters. But is this the

right question?  Typically their parameters were considered to be indicator variables in the model, but unlike the early path analysis, structural equation models today are typically

estimated in their entirety, and the number of unique entries in the covariance matrix is p(pTH) when p is the number of indicators. It would be reasonable to assume that the sample size

p(p+1)
2

is proportional to rather than p.  Unfortunately, Monte Carlo studies conducted in the 1980s and 1990s showed that the problem is somewhat more subtle and complex than

p(p+1)
2

that, and sample size and estimator performance are generally uncorrelated with either or p.

Difficulties arise because the p indicator variables are used to estimate the k latent variables (the unobserved variables of interest) in the SEM, and even though there may be p(pTH)
free parameters, these are not individually the focus of SEM estimation. Rather, free parameters are clustered around a much smaller set of latent variables which are the focus of the
estimation (or alternatively, the correlations between these unobserved latent variables are the focus of estimation). Tanaka (1987) argued that sample size should be dependent on the
number of estimated parameters (the latent variables and their correlations) rather than on the total number of indicators; a view mirrored in other discussions of minimum sample sizes
(Browne and Cudeck 1989, 1993; Geweke and Singleton 1980; Gebring and Anderson 1985). Veicer and Fava (1987, 1989, 1994) went further, after reviewing a variety of such
recommendations in the literature, concluding that there was no support for rules positing a minimum sample size as a function of indicators. They showed that for a given sample size, a

convergence to proper solutions and goodness of fit were favorably influenced by: (1) a greater number of indicators per latent variable; and (2) a greater saturation (higher factor loadings).

Marsh and Bailey (1991) concluded that the ratio of indicators to latent variables rather than just the number of indicators, as suggested by the rule of 10, is a substantially better basis on
which to calculate sample size, reiterating conclusions reached by Boomsma (1982) who suggested using a ratio r = p/k of indicators to latent variables . Information input to the SEM
estimation increases both with more indicators per latent variable, as well as with more sample observations. A series of studies (Ding, et al. 1995) found that the probability of rejecting
true models at a significance level of 5% was close to 5% for r =2  (where r is the ratio of indicators to latent variables) but rose steadily as r increased— for r = 6 , rejection

rates were 39% for sample size of 50; 22% for sample size of 100; 12% for sample size of 200; and 6% for sample size of 400.

Boomsma’s (1982) simulations suggested that a ratio r of indicators to latent variables of r = 4 would require a sample size of at least 100 for adequate analysis; and for r =2 would
require a sample size of at least 400. Marsh et al (1988,1996, 1998)) ran 35,000 Monte Carlo simulations on LISREL CFA analysis, yielding data that suggested that: r = 3 would require a
sample size of at least 200; r = 2 would require a sample size of at least 400; r = 12 would require a sample size of at least 50. Consolidation and summarization of these results

suggest sample sizes:
n > 50r2 — 4507 + 1100

where r is the ratio of indicators to latent variables. ~ Furthermore, Marsh et al. (1996) recommend r = 6 to 10 indicators per latent variable, assuming 25-50% of the initial choices add
no explanatory power, which they found to often be the case in their studies. They note that this is a substantially larger ratio than found in most SEM studies, which tend to limit
themselves to 3-4 indicators per latent variable. It is possible that a sample size rule of ten observations per indicator may indeed bias researchers towards selecting smaller numbers of

indicators per latent variable in order to control the cost of a study or the length of a survey instrument.

4. SAMPLE SIZE WITH PAIRED LATENT VARIABLES

This section develops an algorithm for computing the lower bound on sample size required to confirm or reject the existence of a minimum effect in an SEM at given significance and power
levels. Where SEM studies are directed towards hypothesis testing for complex models, with some level of significance a and power 1 — f3, calculating the power requires first specifying

the effect size § you want to detect. Funding agencies, ethics boards and research review panels frequently request that a researcher perform a power analysis, the argument is that if a
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study is inadequately powered, there is no point in completing the research. Additionally, in the framework of SEM the assessment of power is affected by the variable information

contained in social science data. Table 1 summarizes the notation used.

INSERT TABLE 1: NOTATION USED IN THE PAPER

DECONSTRUCTION

This research asks “What is the lower bound on sample size n for confirmatory testing of SEM as a function of these design parameters?” We want to detect a minimum correlation

(effect) & in estimating k latent (unobserved) variables, at significance and power levels (a*,1 — ). In other words, devise an algorithm f(-) such that n = f[k, §|a*, B].

In this section, we will adopt the standard targets for our required Type | and Il errors under Neyman-Pearson hypothesis testing of a* = .05 and S = .20; but these requirements can be
relaxed for a more general solution.  Structural equation models are characterized here as a collection of pairs of canonically correlated latent variables, and adhere to the standard
normalcy assumption on indicator variables. This leads naturally to a deconstruction of the SEM into an overlapping set of bivariate normal distributions. ~ Make the assumption that an

arbitrarily selected pair of latent variables, call them X and ¥, are bivariate normal with density function:

_ 1 1 G-u? | (rmmy)’ _ Zp(x—ux)(y—uy))
F( Ve ty, . 0xs0y) = Zmﬂymexp[ Z(l—p2)< +

o2 o} axay

2
0 poy Uy]

and covariance structureis X = [ 2
poxoy, Oy

COMBINATORICS OF HYPOTHESIS TESTS ON LINKS, AND SIGNIFICANCE LEVEL

It is typical in the literature to predicate an SEM analysis with the caveat that one needs to make strong arguments for the complex models constructed from the unobserved, latent
constructs tested with the particular SEM, in order to support the particular links that are included in the model. This is usually interpreted to mean that each proposed (and tested) link in
the SEM needs to be supported with references to prior research, anecdotal evidence and so forth.  This may simply mean the wholesale import of a preexisting model (e.g., the Technology
Acceptance Model) based on the success of that model in other contexts, but not specifically building on the particular effects under investigation. Unfortunately, it is uncommon to see
any discussion of the particular links (causal or otherwise) or combinations of links that are excluded (either implicitly or explicitly) from the SEM model. Ideally, there should also be

similarly strong arguments made for the inapplicability of omitted links or omitted combinations of links.

We can formalize these observations by letting i be the number of the potential links between latent variables. Extend the individual link minimum sample size to a minimum sample size
for the entire SEM; building up from pairs of latent variables by determining the number of possible combinations of the i pairs, each with an ‘effect’ that needs detection. Each effect can

be dichotomized:

0:p; <8

link, = {1: s

Our problem is to compute the number of distinct structural equation models that can exist in terms of the 0,1 values of their links using combinatorial analysis.

INSERT FIGURE 2: AN EXAMPLE OF A STRUCTURAL EQUATION MODEL WITH SIX LATENT VARIABLES AND FIVE CORRELATIONS

INSERT FIGURE 3: THE SEM EXAMPLE IN FIGURE 2 WITH ALL POSSIBLE PAIRED LINKS SHOWN

1)

Then each combination of {0,1} values for links which our tests of the SEM on the whole requires us to discriminate amongst provides us a set of % binary numbers (see figures 2

and 3) each representing a unique combination of latent variables. The unique model hypothesized in any particular study will be some model (binary number) which is exactly one out of

k(k-1) k(k-1)
the possible 2 /2 ways of connecting these latent variables; testing must discriminate this path from the possible 2 /2—1 other paths which collectively define the alternative

hypothesis.

For hypothesis testing with a significance of a* (which we have by default setto @* = .05) on each link, it is necessary to correct for effective significance level « in differentiating one
possible model from all other hypothesized structural equation models that are possible. The Sidak correction is a commonly used alternative for the Bonferroni correction where an

experimenter is testing a set of hypotheses with a dataset controlling the family-wise error rate.  In the context of the current research the Sidak correction provides the most accurate

< 2
results.  For the following analysis, a Sidak correction gives @ = a(k) =1 - (1 — a*) /k(k=1) where the power of the test can be held at 1 — 8 = .8 over the entire SEM with no

modification.
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MINIMUM EFFECT SIZE &

Minimum effect, in the context of structural equation models, is the smallest correlation between latent variables that we wish to be able to detect with our sample and model. Small
effects are more difficult to detect than large effects as they require more information to be collected. Information may be added to the analysis by collecting more sample observations,

by adding parameters, and by constructing a better model.
INSERT FIGURE 4: SIGNIFICANCE AND POWER FOR THE MINIMUM EFFECT THAT NEEDS TO BE DETECTED

Sample size for hypothesis testing is typically determined from a critical value (see Figure 4) that defines the boundary between the rejection (set by a) and non rejection (set by S) regions.
The minimum sample size that can differentiate between H, and H, occurs where the critical value that is exactly the same under the null and alternative hypotheses. The approach to
computing sample size here is analogous to standard univariate calculations (Cochran 1977; Kish 1955; Lohr 1999; Snedecor and Cochran 1989, Westland and See-to 2007) but using a

formulation for variance customized to this problem.

In the context of structural equation models, canonical correlation between latent variables should be seen simply as correlation, the ‘canonical’ qualifier referring to the particulars of its
calculation in SEM since the latent variables are unobserved, and thus cannot be directly measured. Correlation is interpreted as the strength of statistical relationship between two
random variables obeying a joint probability distribution (Kendall and Gibbons 1990) like a bivariate normal. Several methods exist to compute correlation: the Pearson’s product moment
correlation coefficient (Fisher 1921, 1990), Spearman’s rho and Kendall’s tau (Kendall and Gibbons 1990) are perhaps the most widely used (Mari and Kotz 2001). Besides these three
classical correlation coefficients, various estimators based on M-estimation (Shevlyakov and Vilchevski 2002) and order statistics (Schechtman and Yitzhaki 1987) have been proposed in the
literature. Strengths and weaknesses of various correlation coefficients must be considered in decision making. The Pearson coefficient, which utilizes all the information contained in the
variates, is optimal when measuring the correlation between bivariate normal variables (Stuart and Ord 1991).  However, it can perform poorly when the data is attenuated by nonlinear
transformations. The two rank correlation coefficients, Spearman’s rho and Kendall’s tau, are not as efficient as the Pearson correlation under the bivariate normal model; nevertheless
they are invariant under increasing monotone transformations, thus often considered as robust alternatives to the Pearson coefficient when the data deviates from bivariate normal model.
Despite their robustness and stability in non-normal cases, the M-estimator-based correlation coefficients suffer great losses (up to 63% according to Xu, et al. 2010) of asymptotic relative
efficiency to the Pearson coefficient for normal samples, though such heavy loss of efficiency might not be compensated by their robustness in practice. Schechtman and Yitzhaki (1987)
proposed a correlation coefficient based on order statistics for the bivariate distribution which they call Gini correlation (because it is related to Gini’s mean difference in a way that is similar

to the relationship between Pearson correlation coefficient and the variance).

INSERT  FIGURE 5: BIVARIATE NORMAL SCATTERPLOTS FOR [Z;] = [g] AND % = E ‘1’] WITH n = 500

As a measure of such strength, correlation should be large and positive if there is a high probability that large or small values of one variable occur (respectively) in conjunction with large of
small values of another; and it should be large and negative if the direction is reversed (Gibbons and Chakraborti 1992). Figure 5 provides a rugplot of bivariate normal scatterplots

generated by the R mtvnorm package that provide a visual description of the clustering and behavior of particular values of correlation p between the latent variables.

We will use a standard definition of minimum effect size to be detected — the strength of the relationship between two variables in a statistical population as measured by the correlation p
for paired latent variables — following conventions articulated in Wilkinson (1999); Nakagawa et al. (2007) and Brand, et al. (2008). Where we are assessing completed research, we can
substitute for § the smallest correlation (effect size) on all of the links between latent variables in the SEM. Cohen (1988, 1992) provides the following guidelines for the social sciences:
small effect size, |p| =0.1-.23; medium, |p| =0.24-.36;large, |p| =0.37 or larger. Figure 5 gives us a feel for Cohen’s recommendations — |p| =0.37 still has a great deal of dispersion,

and we might find it difficult to visually determine correlation merely by looking at a scatterplot where the variables on the two axes have correlation |p| =0.37.

ESTIMATOR FOR CORRELATION IN A BIVARIATE NORMAL DISTRIBUTION

Let (X;,Y;) i =1,2,..,n bearandom sample of independent and identically distributed (i.i.d.) data pairs of size n from the bivariate normal population of (X,Y) population with
continuous joint cumulative distribution function.  Let X;., < X,.,, < --- < X,,.,, be the order statistics (where the first subscript is the rank, and the second the sample size) of the X;
sample values; let Y., <Yy, < -+ < Yy, be the order statistics of the ¥; sample values; and let Y};.,,) be the Y sample value associated with the X;,, sample value in the sample pairs
X, Y). Vi) is called the concomitant of the it" order statistic (Balakrishnan and Rao 1998). Reversing the roles of X and Y, we can also obtain the associated Xj;.p).

Extending the work of Schechtman and Yitzhaki (1987), Xu, et al. (2010) show that the two Gini correlations with respect to (X;,Y;) are

1 .
mﬁ?(m —n— DX}y

ﬁZ?(Zi -n—1Xn

ﬁaxy (X- Y) =



and

1 .
mZ?(ZL —n— DYin

ATy Eh@ 1 = DY

Pey (Y, X) =

Ingeneral  pg,, (X,Y) is not symmetric —thatis, pg,,(X,Y) # pg,,(Y,X). Such asymmetry violates the axioms of correlation measurement (Gibbons and Chakraborti 1992; Mari and

Kotz 2001) which is assumed in SEM estimation.  Xu, et al. (2010) provide a symmetrical estimator (which we use here) obtained from their linear combination:
oY, X) =3 [Payy (¥, X) + Py (X,1)]
Gini correlation P possesses the following general properties (Schechtman and Yitzhaki 1987):
1) pge[-11]
2)  pe(Y,X) =ps(Y,X) =+1 if Y isamonotone increasing (decreasing) function of X
3) pc(Y,X) is asymptotically unbiased and the expectations of p;(Y,X) and p;(X,Y) arezerowhen Y isindependent of X
4)  pe(++) = —pg(—+) = —pg(+,—) = pg(—,—) forboth p(Y,X) and = ps(X,Y)
5) pe(Y,X) isinvariant under all strictly monotone transformations of X

6) pe(Y,X) is scale and shift invariant with respect to both X and Y and

D
7) Vn (b — p) — N(0,02) ;i.e., converges in distribution to a normal distribution with mean zero and variance g2 (This is from Schechtman and Yitzhaki (1987) applying

methods developed by Hoeffding (1948))

8) The Spearman rho measure of correlation is a special case of p; (Y,X) ; Xu, et al (2010).



Xu, et al. (2010) showed that Gini correlations are asymptotically normal with the following mean and variance®:
dc = u(pe) =

2(n—-2
_%(arcsin(p/z) +pJa—p2— p\/§) +

T p(n+1) 2 . —
3ne=n T D (arcsin(p) + py/1—p2) + o(n™Y)

6¢ = 0%(pg) =

_ 2
% (\/1—_112 — p arcsin(p) + n(nT-FI)) "

m-2)1-p*) ((1-p*) _ o (P -1
D (\/7 p arcsin( /2))+o(n )

Xu, et al. (2010) used Monte Carlo simulations to verify these formulas’ asymptotic results (using asymptotic relative efficiency and root mean square error performance metrics) showing
that they are applicable for data of even relatively small sample sizes (down to around 30 sample points).  Their simulations confirmed and extend Hea and Nagarajab’s (2009) Monte
Carlo simulations exploring the behavior of nine distinct correlation estimators of the bivariate normal correlation coefficient, including the estimator pg, the sample correlation for the
bivariate normal, and estimators based on order statistics. The estimator p; was found generally to reduce bias and improve efficiency as well or better than other correlation estimators
in the study.  Xu, et al. (2010) also compared p;with three other closely related correlation coefficients: (1) classical Pearson’s product moment correlation coefficient, (2) Spearman’s
rho, and (3) order statistics correlation coefficients. ~Gini correlation bridges the gap between the order statistics correlation coefficient and Spearman’s rho, and its estimators are more
mathematically tractable than Spearman’s rho, whose variance involves complex elliptic integrals that cannot be expressed in elementary functions. Their efficiency analysis showed that

estimator pg’s loss of efficiency is between 4.5% to 11.3%, much less than that of Spearman’s rho which ranges from 8.8% to 30.5%.

CALCULATION OF SAMPLE SIZE ON A SINGLE LINK

! o(n™1) convergence implies that for the remaining terms v(n) go to zero faster than n™%; nv(n) — 0



Construct a hypothesis test to just detect the minimum effect size &:

Ho: p=po =0

Hy: p—po=46

The one-sample, two-sided formulation (see Figure 4) that reconciles the null and alternative hypothesis tests for the estimator p; = pg(n) is
0+ zl,a/zf?a(n) =8+2_p6:(n)

Xu, et al. (2010) show that  |i; — p| — 0 quickly: for n > 30 from a bivariate normal population they show that we can assume |fi; —p| = 0. Similarly, for n > 30 we can assume
n-oo

that z — values are adequate approximations for t — values intheformula.  Even under the very weak assumptions of the ‘rule of 10’ a sample of n = 30 implies a model of at

most three variables — significantly simpler than the majority of published models.  Rearranging to place all terms with n on the left hand side:

H

s = (—2—)
deln) = Zl_a/Z—Zl,/;

Thus to within little o(n™!) and using the formula for 62

1-p? 1 -2 -p>) [ (1 -p?
H=f(np)= 1(l(n—_[)1))<\/1—p2—parcsin(p)+n(n; ))+(n n(z(_l)p) 5/4__':2)—parcsin(p/2)

We want to restate this as some function that calculates sample size n = g(H,p). Solve for n by simplifying in terms of:

B=p arcsin(p/z)

C = p arcsin(p)

A

D=

3-4A

5 2

H=|—+-—

Zl—”‘/z —Z1-B

- VEZ -

Then n = y are the solutions for the quadratic equation that restates H — f(n, p) = 0:

T T
nz_A(E_B;D)+Hn—A(g+ﬂ+;B_C_2D)=n2+En+F:0

Orintermsof A,B,C,D and H and taking the largest root

n=% A(g—B+D)+H+\/[A(%—B+D)+H]2+4AH(%+\/Z+ZB—C—2D)

5. META-STUDY AND DISCUSSION

This research constructed two necessary conditions for sample adequacy:

1. Section 3 determined the sample size needed compensate for the ratio of number of indicator variables to latent variables (summarized from Monte Carlo simulations that have
appeared in the literature); and



2. Section 4 determined the sample size required to assure the existence or non-existence of a minimum effect (correlation) on each possible pair of latent variables in the SEM
(determined analytically).

Of course, neither of these conditions is sufficient to assure sample adequacy for a particular choice of (@, 8) because there are so many other factors that can affect estimation and sample
size — multicolinearity, appropriateness of data sets, and so forth.  Additionally, the information contained in the sample and indicator variables must be adequate to compensate for
variations in particular SEM estimation methodologies. For example, partial least square (PLS) approaches generate parameter estimates that lack consistency. Dhrymes (1970);
SchneeweiR (1990, 1991, 1993); Thomas, et al. (2005); and Féhér (1989) all demonstrate that the IV/2SLS techniques converge to the same estimators, but are more robust. Joreskog
(1967, 1970; Joreskog and Sorbom 1996) suggests that departures from normal distribution for the indicators will demand larger samples, and that non-normal indicators require one, two or

three magnitudes larger samples, depending on distribution.

From a practical viewpoint, sample size questions can take three forms:

1. A priori: will ask what sample size will be sufficient given the researchers prior beliefs on what the minimum effect is that the tests will need to detect

2. Ex posteriori: will ask what sample size should have been taken in order to detect the minimum effect that the researcher actually detected in an existing (either sufficient or
insufficient) test.  If the ex posteriori measured effect is smaller than the researchers prior beliefs about the minimum effect (in 1.) then sample size needs to be increased
commensurately.

3. Sequential test optimal-stopping: is couched in a sequential test optimal-stopping context, where the sample size is incremented until it is considered sufficient to stop testing.

In this section, we report on an ex posteriori meta-study that applies the algorithms developed in this paper to a specific body of SEM research — studies published in five core journals in
MIS and e-Commerce (ISR, MISQ, Management Science, Decision Sciences and JMIS) between 1989 (the date of the seminal study by Davis, et al. 1989) and 2007. We assumed that the link
with the smallest effect actually observed in these studies determines § — a conservative assumption, because the research would have been very likely to hold a bias in actually wanting

to detect even smaller effects than those actually observed, but the model and data would have only had sufficient resolution to capture the minimum effect observed.

Additionally, many of the studies listed in Appendix A analyzed Likert scale data that is not distributed normally; nevertheless, the assumption of normalcy of data is a common one in SEM
studies, even where the data is clearly not normal, for example where survey data returns discrete Likert scale data censored at 0, and derives from a mass function which is likely to be
skewed. Because estimator behavior is best understood for normal data, we can assume that, in these non-normal data studies our lower bound on sample size needs at a non-normalcy
risk premium for sample adequacy — departures from a normal weight matrix in LISREL suggest that this may be two to three orders of magnitude larger than sample size required for normal

data.

Sample sizes actually used in drawing conclusions in the study were compared with our computed ‘lower bound’, and a difference taken as a percentage (the far right hand column of

Actual SS—Required SS

Actual Ss show a significant systematic bias towards too small a sample size in the papers surveyed. In the meta-study, the

Appendix A). Histograms of sample adequacy
average sample was 770% too small; with the removal of three outliers, this dropped to 400% too small (figures 6 and 7).  Actual sample sizes in these 74 research articles were on average
only 50% of the minimum needed to draw the conclusions the studies claimed; median sample size was 38% of the minimum required, reflecting a substantial negative skewing in the
undersampling, and standard deviation was 29%. Overall, 80% of the research articles in this meta-study drew conclusions from samples that were smaller than the lower bounds on
sample size computed here. Because each additional observation increases the cost of the study in time, effort and monetary terms, an inclination to economize on data collection is
understandable.  The conclusion that seems most appropriate from our meta-study is that MIS researchers have been given inadequate guidance, and have not been well served by
existing sample size heuristics. Lacking the sample size information they need, researchers may be inclined to skimp on sample collection. Unfortunately, when samples are too large,

the studies were more costly than they needed to be in drawing particular conclusions; when samples are too small, the credibility of their conclusions is weakened.

INSERT  FIGURE 6: PERCENT ERROR IN SAMPLE SIZE FOR 74 STUDIES IN THE ENTIRE META-STUDY (MEAN=-770, STANDARD DEVIATION = 25, SKEWNESS=-6.5, KURTOSIS = 47)

INSERT  FIGURE 7: PERCENT ERROR IN SAMPLE SIZE FOR 74 STUDIES IN THE META-STUDY REMOVING OUTLIERS < —2500% (MEAN=-400, STANDARD DEVIATION = 642, SKEWNESS=-2.5, KURTOSIS = 7.6)

We should not be surprised, given our review of the prior literature, that existing sample size heuristics are misleading researchers in this area. Numerous studies have concluded that
linear heuristics like ‘the rule of 10" are poor guides to fit and explanatory power of the model or adequacy of the sample size. (Browne and Cudeck 1989, 1993, Geweke, and Singleton

1980; Gebring and Anderson 1985); Veicer and Fava 1987, 1989, 1994; Marsh and Bailey 1991; Boomsma 1982; Ding, et al. 1995)

As noted earlier, neither of the conditions developed here is sufficient to assure sample adequacy for a particular choice of (a, ) because there are so many factors that can affect
estimation and sample size in something as complex as a structural equation model. Consequently, the necessary sample size for accurate estimation will in most cases exceed the lower
bound computed here. But review of actual sample sizes summarized in figures 6 and 7 suggests that, at its most unambitious, this lower bound will insure against the very erratic under-

sizing of samples that seems common in SEM analysis.
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Future research on sample size choice should be conducted on lines specific to the various algorithms used to estimate SEM — PLS'’s principal components analysis algorithms; LISREL and
AMOS’s gradient search algorithms; and systems of equations regression algorithms. Indeed, seminal research in each of these areas alluded to this decades ago. Wold (1980, 1981) went
even further in advising that PLS is more suitable for exploratory model specification searches rather than hypotheses testing, and introduced the concept of plausible causality for that very

reason. Thus in PLS, the sample size question is probably both less relevant and less critical, because hypothesis testing is better left to LISREL and systems of equation approaches.

The problem in building the structural model completely on theory, without reference to the data is that the latent constructs chosen by the researcher may be substantially different than
those that would drop out of an exploratory factor analysis. Researchers have developed a test for this called Harmon’s one factor test (Podsakoff and Organ 1986) commonly used to
check for common factor bias in SEM (and often conducted ex posteriori). Common factor bias appears because inherent clustering results from a particular distance measure used to
position data points in n-dimensional space — for example, principal components analysis designs a distance measure to minimize the variance not explained by the main components
(clusters). But SEM will impose prior beliefs on the data, in the form of the structure of latent variables. Thus data are assumed to cluster around the latent constructs — the factor
loadings determine how this clustering occurs. SEM models are often constructed without reference to clustering in the underlying data given a particular distance measure; it is entirely
theory-driven, though this is not in itself a bad thing. Common factor bias reflects this divergence in the model and the data, and if it is too extreme, may indicate that the data is

incomplete, or that the model is misspecified.

Common factor bias can be avoided a priori through a pretest of the clustering of indicator data. Common factor bias occurs because procedures that should be a standard part of model
specification are in practice left until after the data collection and confirmatory analysis. J6reskog developed PRELIS for these sorts of pretests and model re-specifications. If this clustering
shows that the indicators are providing information on fewer variables than the researchers’ latent SEM contains, this is an indication that more indicators need to be collected that will
provide (1) additional information about the latent constructs that don’t show up in the cluster analysis; and (2) additional information to split one exploratory factor into the two or more
latent constructs the research needs to complete the hypothesized model. In exploratory factor analysis, the two tests that are most useful for this are the Kaiser (1960) criterion that
retains factors with eigenvalues greater than one (unless a factor extracts at least as much information as the equivalent of one original variable, we drop it) and the scree test proposed by
Cattell (1966) that compares the difference between two successive eigenvalues and stops taking factors when this drops below a certain level. In either case, the suggested factors are not
necessarily the latent factors that the researcher’s theory would suggest — rather they are the information that is actually provided in the data, this information being the main justification

for the cost of data collection. So in practice, either test would set a maximum number of latent factors in the SEM if that SEM is to be explored with one’s own particular dataset.

When SEM are built around valid real world constructs (even if these are unobservable) the algorithms proposed in this paper impose only weak additional assumptions on the indicators and
latent variables in order to compute sample sizes adequate for estimation. Our limited application to a window of IS and e-commerce publications has shown that concerns are warranted
concerning existing SEM sample size calculations and we need to remain suspicious of conclusions reached in studies based on inadequate sample sizes. Furthermore, a large number of
studies in our sample devised their tests without first committing to minimum effect size that they were trying to detect, or indicated in portion of non-response in surveys. It is clear that
journal referees need to begin asking for survey response, minimum effect size § and a justification of the sample size. By incorporating these suggestions, it is argued that the research

community will enhance the credibility and applicability of their research, with a commensurate improved impact and influence in both industry and academe.

Note: | want to thank the reviewers and editors who persevered through several revisions of this paper, and helped nurture it to completion. Any remaining errors are fully my own

responsibility.

Note on software: You may download at Elsevier’s ECRA site a software package that computes the lower bounds developed in this paper. This software is written in Windows C# Forms

to run on Windows platforms; in addition to a number of the packages in the R language, it was used to calculate the results in this paper.
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APPENDIX A: SAMPLE ADEQUACY IN A SET OF E-COMMERCE AND MIS SEM STUDIES

Studies Latent Indicator Sample Minimum Effect Sidak corrected Sample bound Sample bound Sample Size Study sampi
Variables Variables Points Observed a section 4 section 3 lower bound (-) or above

Choudhury and Karahanna , MISQ, V.32(1) 6 35 499 0.12 0.0034 1177 176 1177
Kanawattanachai and Yoo, MISQ, V.31(4) 3 11 146 0.21 0.0170 264 122 264
Damien, et al., MISQ, V.31(3) 6 43 31 0.08 0.0034 2694 443 2694
Webster and Ahuja, MISQ, V.30(3) 6 38 207 0.17 0.0034 568 256 568
Tanriverdi, MISQ, V.30(1) 10 16 356 0.11 0.0011 1661 508 1661
Awad and  Krishnan, MISQ, V.30(1) 8 24 532 -0.28 0.0018 206 200 206
Van der Heijden nd Hans, MISQ, V.28(4) 4 15 1144 0.15 0.0085 628 116 628
Barua, et al., MISQ, V.28(4) 12 45 1125 0.109 0.0008 1783 116 1783
Straub, et al., MISQ, V.27(1) 8 34 213 0.1 0.0018 1886 91 1886
Susaria, et al., MISQ, V.27(1) 8 32 256 0.067 0.0018 4253 100 4253
Tarafdar, et al, IMIS, V.24 (1) 10 21 256 0.08 0.0011 3181 376 3181
Fuller, etal, JMIS, V.23 (3) 5 22 318 0.3 0.0051 148 88 148
Kearns, et al , JMIS, V.23 (3) 9 44 269 0.11 0.0014 1610 95 1610
Wang, et al, IMIS, V.23 (2) 5 22 149 0.12 0.0051 1098 88 1098
Lopes, et al , JMIS, V.23 (2) 4 13 392 0.24 0.0085 226 166 226
Hess, et al, JMIS, V.22 (3) 8 36 233 -0.28 0.0018 206 88 206
Johnson, et al , IMIS, V.22 (2) 7 16 202 -0.19 0.0024 472 333 472
Bhatt, etal,JMIS, V.22 (2) 5 26 202 0.22 0.0051 303 112 303
Chang et al, JMIS, V.22 (1) 3 12 476 0.65 0.0170 9 100 100
Wallace, et al. Dec.Sci., V.35(2) 6 27 507 0.13 0.0034 997 88 997
Rabinovich, etal., Dec.Sci., V.34(1) 2 14 840 0.126 0.0500 587 400 587
Abdinnour-Helm, et al. Dec.Sci., V.36(2) 5 12 176 0.1 0.0051 1596 308 1596
Escrig-Tena, et al., Dec.Sci., V.36(2) 9 37 231 0.1 0.0014 1957 95 1957
Pullman and Gross, Dec.Sci., V.35(3) 3 15 400 0.52 0.0170 24 100 100
Tu, et al., Dec.Sci., V.35(2) 3 24 303 0.22 0.0170 238 700 700
Droge, et al., Dec.Sci., V.34(3) 4 17 437 -0.16 0.0085 548 91 548
Janz and Prasarnphanich, Dec.Sci., V.34(2) 5 15 231 0.41 0.0051 65 200 200
Hong and Tam, ISR, V.17(2) 5 27 1328 0.1 0.0051 1596 128 1596
Dinevand Hart, ISR, V.17(1) 5 18 369 -0.15 0.0051 690 128 690
Jarvenpaa, et al., ISR, V.15(3) 6 30 136 -0.28 0.0034 187 100 187
Pavlou and Gefen, ISR, V.15(1) 10 33 274 0.1 0.0011 2020 160 2020
Bassellier, et al., ISR, V.14(4) 7 38 404 0.2 0.0024 422 131 422

Choo, et al., MS, V.53(3) 5 14 951 0.38 0.0051 81 232 232
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Sabherwal, et al., MS, V.52(12)

Bagozzi and Dholakia, MS, V.52 (7)

de Jong, et al., MS, V.51(11)

Kim and Malhotra, MS, V.51(5)

Vickery, et al., MS, V.50 (8)

Balasubramanian, etal, MS, V.49(7)

Au, et al., MISQ, V.32(1)

Hsieh, et al., MISQ, V.32(1)

Nadkarni and Gupta, MISQ, V.31(3)

Liang, et al., MISQ, V.31(1)

Komiak and Benbasat, MISQ, V.30(4)

Bhattacherjee and Sanford, MISQ, V.30(4)

Karahanna, et al., MISQ, V.30(4)

Srite and Karahanna, MISQ, V.30(3)

Stewart and Gosain, MISQ, V.30(2)

Moores and Chang, MISQ, V.30(1)

Pavlou and Fygenson, MISQ, V.30(1)

Ahuja and Thatcher, MISQ, V.29(3)

Ko, et al., MISQ, V.29(1)

Bhattacherjee and Premkumar, MISQ,
V.28(2)

Gemino, IMIS, V.24 (3)

Son, et al, JMIS, V.24 (1)

Klein, et al., Dec.Sci., V.38(4)

Wang and Wei, Dec.Sci., V.38(4)

Keil, et al., Dec.Sci., V.38(3)

Ettlie and Pavlou, Dec.Sci., V.37(2)

Looney, et al., Dec.Sci., V.37(2)

Brown and Chin, Dec.Sci., V.35(3)

Teigland and Wasko, Dec.Sci., V.34(2)

Saraf, et al., ISR, V.18(3)

Pavlou and Dimoka, ISR, V.17(4)

Nicolaou and McKnight, ISR, V.17(4)

Pavlou and El Sawy, ISR, V.17(3)
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FIGURE 2: DEVELOPMENT OF STRUCTURAL EQUATION MODEL ESTIMATION
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FIGURE 2: AN EXAMPLE OF A STRUCTURAL EQUATION MODEL WITH SIX LATENT VARIABLES AND FIVE CORRELATIONS



e

FIGURE 3: THE SEM EXAMPLE IN FIGURE 2 WITH ALL POSSIBLE PAIRED LINKS SHOWN
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FIGURE 4: SIGNIFICANCE AND POWER FOR THE MINIMUM EFFECT THAT NEEDS TO BE DETECTED
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Figure 5: Bivariate Normal Scatterplots for [ﬁ;] = [8] and ¥ = [p ’1)] with n =500
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FIGURE 6: PERCENT ERROR IN SAMPLE SIZE FOR 74 STUDIES IN THE ENTIRE META-STUDY (MEAN=-770, STANDARD DEVIATION = 25, SKEWNESS=-6.5, KURTOSIS =
47)
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FIGURE 7: PERCENT ERROR IN SAMPLE SIZE FOR 74 STUDIES IN THE META-STUDY REMOVING OUTLIERS < —2500% (MEAN=-400, STANDARD DEVIATION = 642,
SKEWNESS=-2.5, KURTOSIS = 7.6)
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Number of parameters (indicators) in the SEM

Number of latent variables in the SEM

n Computed sample size lower bound
X, 7] and Bivariate Normal random latent variables (and their realization) in the SEM
[X;, i
Xin < Xom o order statistics of the (X;,Y;) sample values; the first index is rank, and the second is sample
Yy, < Yy size
Yiin) concomitant of the it" order statistic; Yiim) is the Y sample value associated with the X;,
sample value in the sample pairs (X;,Y;).
o Minimum effect size that our computed sample size can detect
p Unknown correlation for a bivariate Normal random vector [X, 7]
De Estimator of Gini correlation pg
dg; 651 Mean and standard deviation estimators for Gini correlation
[a*; 1 —PB] Significance and power of test
a The Sidak corrected significance for discriminations between possible SEM link combinations at
a resolution of §
[Zl—ai zl_ﬁ] Rejection bound at significance a and non-rejection bound at power 1 —f ; we substitute

the quantile function (inverse cumulative Normal) ®~(x) for z, in calculations

TABLE 2: NOTATION USED IN THE PAPER
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